Proximal Point Algorithm with Schur Decomposition on the Cone of Symmetric Semidefinite Positive Matrices∗

نویسندگان

  • Ronaldo Gregório
  • Paulo Roberto Oliveira
چکیده

In this work, we propose a proximal algorithm for unconstrained optimization on the cone of symmetric semidefinite positive matrices. It appears to be the first in the proximal class on the set of methods that convert a Symmetric Definite Positive Optimization in Nonlinear Optimization. It replaces the main iteration of the conceptual proximal point algorithm by a sequence of nonlinear programming problems on the cone of diagonal definite positive matrices that has the structure of the positive orthant of the Euclidian vector space. We are motivated by results of the classical proximal algorithm extended to Riemannian manifolds with non positive sectional curvature. An important example of such manifold is the space of symmetric definite positive matrices, where the metrics is given by the Hessian of the standard barrier function −ln det(X). Then, observing the obvious fact that proximal algorithms do not depend on the geodesics, we apply those ideas to develop a proximal point algorithm for convex functions in this Riemannian metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A proximal technique for computing the Karcher mean of symmetric positive definite matrices

This paper presents a proximal point approach for computing the Riemannian or intrinsic Karcher mean of, n×n, symmetric positive definite (SPD) matrices. Our method derives from proximal point algorithm with Schur decomposition developed to compute minimum points of convex functions on SPD matrices set when it is seen as a Hadamard manifold. The main idea of the original method is preserved. Ho...

متن کامل

Logarithmic barriers for sparse matrix cones

Algorithms are presented for evaluating gradients and Hessians of logarithmic barrier functions for two types of convex cones: the cone of positive semidefinite matrices with a given sparsity pattern, and its dual cone, the cone of sparse matrices with the same pattern that have a positive semidefinite completion. Efficient large-scale algorithms for evaluating these barriers and their derivati...

متن کامل

A Multiple-Cut Analytic Center Cutting Plane Method for Semidefinite Feasibility Problems

We consider the problem of finding a point in a nonempty bounded convex body Γ in the cone of symmetric positive semidefinite matrices S + . Assume that Γ is defined by a separating oracle, which, for any given m×m symmetric matrix Ŷ , either confirms that Ŷ ∈ Γ or returns several selected cuts, i.e., a number of symmetric matrices Ai, i = 1, ..., p, p ≤ pmax, such that Γ is in the polyhedron {...

متن کامل

Associative and Jordan Algebras, and Polynomial Time Interior-Point Algorithms for Symmetric Cones

We present a general framework whereby analysis of interior-point algorithms for semidefinite programming can be extended verbatim to optimization problems over all classes of symmetric cones derivable from associative algebras. In particular, such analyses are extendible to the cone of positive semidefinite Hermitian matrices with complex and quaternion entries, and to the Lorentz cone. We pro...

متن کامل

A Penalty Method for Rank Minimization Problems in Symmetric Matrices∗

The problem of minimizing the rank of a symmetric positive semidefinite matrix subject to constraints can be cast equivalently as a semidefinite program with complementarity constraints (SDCMPCC). The formulation requires two positive semidefinite matrices to be complementary. We investigate calmness of locally optimal solutions to the SDCMPCC formulation and hence show that any locally optimal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008